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Abstract – NEAMS MeshKit module is capable of generating geometry and meshes that accurately 
describe the computational model for simulating a variety of nuclear reactors. MeshKit uses a 
graph-based process for specifying the overall meshing problem, with graph nodes representing 
meshing and other operations, and graph edges as dependencies between those operations. In our 
previous papers on Reactor Geometry (and Mesh) Generation (RGG) tool in MeshKit: basic 
working, examples of models generated using serial and parallel version of the tool were 
presented. In this paper, we briefly describe the MeshKit design philosophy and list currently 
available algorithms for Hex/Quad, Tet/Tri along and other helper-meshing algorithms in 
MeshKit. New keywords and features introduced to RGG are highlighted with the help of 
examples. Reactor assembly examples include the XX09 assembly used in Shutdown Heat Removal 
Tests (SHRT) that demonstrated passive safety features of EBR-II Experimental Breeder Reactor 
and an Advance Burner Test Reactor (ABTR) fuel assembly. Reactor core examples include the 
ABTR core model with restraint rings, homogenized High Temperature Gas-cooled Reactor 
(HTGR) and homogenized EBR-II core model with detailed XX09 assembly. 

 
 

I. INTRODUCTION 
 
Mesh generation is a challenging field of science that 

has made rapid advancement over the years. New 
discretization techniques, improvements in computer 
hardware and robust solver methods have driven the 
research in this field. While several open source and 
commercial mesh generation tools were already available 
when this project was started, each of these tools were 
deficient in some way, either being too restrictive in their 
licensing (e.g. GPL), focused on only one specific meshing 
technology (triangles, tetrahedral), or lacking support for 
other parts of the meshing process (e.g. geometric model 
query). MeshKit is meant to overcome these problems, as 
well as to serve as a delivery vehicle for specific meshing 
tools and algorithms for various applications. MeshKit uses 
a graph-based process for specifying the overall meshing 
approach, with graph nodes representing meshing and 
other operations, and graph edges as dependencies between 
those operations.  This approach supports the traditional 
BREP-driven meshing process, but also supports more 
complex, multi-step meshing procedures, like post-mesh 
boundary layer generation, mesh generation then 
refinement, and assembly of large meshes using 
read/copy/move operations. 

Preparation of a model suitable for analysis is an 
important step in any physics simulation. A nuclear reactor 
comprises of ducts, fuel rods, control rods, cladding, load 
pads, restraint rings, grid spacers, coolant flow regions, 

inter-assembly gaps and other instrumentation pieces. 
Detailed modeling of all the pieces and naming of material 
and boundary conditions in the core model is often very 
tedious and hard to perform manually. NEAMS MeshKit 
module is an effort to simplify and minimize the human 
interaction during this process. MeshKit is capable of 
generating geometry and meshes that accurately describe 
the computational model for heat-transfer, fluid mechanics, 
neutronics, structural mechanics and other simulations. 
Two key algorithms - AssyGen and CoreGen are termed as 
the RGG tool in MeshKit. These algorithms are presented 
in our previous paper titled “Creating Geometry and Mesh 
Models for Nuclear Reactor Core Geometries Using a 
Lattice Hierarchy-Based Approach” [1]. This paper cites 
the problems encountered during utilizing conventional 
meshing tools for modeling nuclear reactors. A survey of 
all existing tools is presented and a novel three-stage 
approach is described. A very few efforts have been found 
to develop solutions for automatic the reactor model 
generation. RGG is the first tool that is capable of 
generating assembly and core mesh models of hexagonal 
and rectangular reactors automatically. The three-stages 
workflow described in the paper is 1. AssyGen, 2. Meshing 
and 3. CoreGen. In AssyGen stage, reactor assembly 
geometry is generated and CUBIT [2] meshing script is 
created. Next, meshing of assembly geometry can be 
performed optionally using the CUBIT script generated in 
AssyGen stage or using MeshKit algorithms or using 
external meshing tools. Finally, the CoreGen program 
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creates the reactor mesh by arranging all the assembly and 
interstices meshes. This workflow allows a balance 
between automation and user-intervention; RGG supports 
both text file-based automation as well as manual 
intervention to add model details (e.g. grid spacers). 
Nomenclature for representation of full, 1/12th and 1/6th 
(hex-flat and hex-vertex) hexagonal reactor core lattice, 
along with rectangular lattice is described in the paper. 
CoreGen also has features for creating geometry only 
models. In another approach presented in the paper, 2D 
mesh creation and a special four-stage process is described, 
wherein a 2D mesh model for the core is generated, 
followed by extrusion into the third dimension.  This 
approach requires about half the execution time of the 
original three-stage process, mostly because of a large 
reduction in the number of vertices being compared for 
merging.  It is important to note that the nodes on faces of 
different assemblies that come in contact with each other 
must be matching for this process to work. This can be 
easily achieved for hex-meshed assembly meshes by 
setting same intervals on all side surfaces. For generating 
tetrahedral core meshes with this three-stage process the 
primary difficulty is the careful application of surface 
splitting, mesh reflection, and mesh copying, to ensure 
both translational and rotational symmetry of mesh on the 
side surfaces of assemblies. Propagation of mesh metadata 
during the core mesh generation (CoreGen) stage is 
described in detail. Several examples of hexahedral and 
tetrahedral core mesh generation for a variety of nuclear 
reactors are also presented. It is found that the total human 
time required for modeling a 1/6th of a Very High 
Temperature Reactor (VHTR) core drops by a factor of 50 
to 100. Meshes created by RGG have been successfully 
used by a variety of physics codes such as Nek5000 (open 
source CFD code), Diablo (Structural mechanics code), 
PROTEUS (Neutronics code) and STAR-CCM+ (black 
box commercial CFD code). 

In a follow-up paper titled “RGG: Reactor Geometry 
(and Mesh) Generator” [3] algorithm and results of parallel 
version of CoreGen are described. The original three-stage 
approach for generating lattice-based models was extended 
in several ways from that reported in the previous paper. 
Parallel version of CoreGen allows the problem to fit in 
memory, allowing creation of large reactor meshes that 
would otherwise be impossible to create using 
conventional meshing tools. The central idea of this tool is 
based around distribution of copy/move and merge work 
among the processors utilizing the symmetric lattice-based 
arrangement of pins and assemblies that form the reactor 
core. Superlinear speedups are observed, thereby 
significantly reducing the total time required for generating 
large models. Several examples including VHTR models, a 
¼ PWR reactor core, and a Full Core model for MONJU 
are reported. 

In this paper, our objective is to describe the unique 
design of MeshKit and briefly describe Hex/Quad, Tet/Tri 

and other meshing algorithms available in MeshKit. In-
order to utilize the current state-of-art and popular 
packages, MeshKit supports interoperability with other 
packages. We have interfaces to popular packages such as 
CAMAL, Triangle, NetGen etc. The graph-based design 
enables all these packages to interoperate and solve a 
particular meshing problem. In Section 2, we highlight all 
required and optional packages that MeshKit relies on for 
various functionalities. Section 2 also describes the design 
philosophy and overall organization of the library. New 
results from AssyGen and CoreGen are presented in 
Section 3 and Section 4 respectively. Section 3 and 4 also 
include the details of new features such as automatic 
creation of AssyGen input files based on different material, 
boundary conditions and assembly specification of the 
core. CoreGen’s ability to create core geometry models has 
been utilized for the creation of interstices mesh that 
includes restraint ring in the ABTR core model. Finally, 
we present the conclusions and future work in Section 5. 

 
II. MESHING ALGORITHMS 

 
Most current meshing environments are targeted 

toward a Boundary REPresentation (BREP)-based 
approach, backed by a geometric model and associated 
topology (vertices/edges/faces/regions and adjacency 
relations between them).  The meshing process usually 
proceeds by meshing BREP entities in increasing 
topological dimension, starting with vertices, then edges, 
and so on. However, this model is deficient in several 
ways. First, not every meshing process needs or has a 
geometric model representing the entire domain to be 
meshed.  The best example of this is the RGG tool, where 
individual assembly types have geometric models but are 
then copy/moved into a lattice of assembly models forming 
a reactor core. Second, a meshing procedure may not 
involve only a once-through meshing of each BREP entity; 
again, RGG is a good example of this, where the first part 
of the process involves meshing BREP models, but the last 
step involves copy/moving mesh subsets into a larger core 
lattice.  Finally, the procedure-driven approach to meshing 
represented by most CAD-based meshing tools fails to 
capture the parallelism and dependency structure that can 
be found in most meshing problems (including BREP-
based ones); representing and exploiting this richer 
structure provides more flexibility while still being 
applicable to BREP-based problems. 

MeshKit models the general meshing problem as a 
directed graph-based process, with graph nodes 
representing individual steps in the process and graph 
edges representing dependencies between those steps.  For 
convenience, the graph always has a single root and leaf 
node, with one or more possibly-independent paths 
between them.  Each graph node represents an explicit step 
in the meshing process, whether that involves generation of 
new mesh or performing some other operation on existing 
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mesh.  The part of the model operated on by that operation 
is stored as input for that node, along with any control 
parameters specific to the operation.  The meshing process 
is executed by traversing the graph twice, once in reverse 
direction (from leaf to root), to perform necessary setup 
actions and create upstream graph nodes not explicitly 
created by the application, then in forward direction, to 
perform the action represented by each graph node. 

Fig. 1(a), (b) and (c) show the steps used for meshing 
of a geometric surface bounded by two edges using the 
graph-based approach. In this example the steps followed 
are similar to conventional BREP-based mesh generation. 
For the starting mesh graph, the user specifies a "trimesh" 
meshing operation, assigned to the surface, then the setup 
traversal in trimesh operation determines that it needs a 
mesh for the bounding edges, and creates a graph node 
representing that operation (an EqualEdgeMesh meshing 
operation applied to edges E1 and E2). Continuing the 
traversal, the setup operation on the EqualEdgeMesh node 
determines that the two bounding vertices must be meshed; 
this is accomplished by creating a VertexMesher graph 
node, applied to vertices V1 and V2. The setup operation 
on the VertexMesher node creates no new graph nodes, so 
the setup traversal terminates at the root node. The graph 
nodes with user-specified nodes are colored cyan, and 
automatically created nodes are colored magenta. Note that 
a given node can represent a meshing operation applied to 
multiple entities in the BREP model. In practice, this 
greatly simplifies the mesh graph, with no loss of detail in 
the overall meshing process. The execute phase traverses 
the graph in the forward direction, generating mesh for the 
geometric vertices in the first (non-root) node, for 
geometric edges in the second node, and finally the surface 
mesh in the third node. 
 

 
Fig. 1. (a) User specified Trimesh algorithm 

 
Fig. 1. (b) Setup phase and automatically created nodes 

 
Fig. 1. (c) Final graph with execute phase with model. 

 
In a more complicated example, Fig. 2 shows a users-

specified graph that generates a reactor assembly with a 
boundary layer mesh from scratch. AssyGen operation 
generates geometry from a text-based input file describing 
a reactor assembly. This geometry is input to the 
QuadMesher which feeds into the ExtrudeMesh operation 
to generate a 3D mesh. Then PostBL, based on user-
specified boundary layer thickness, bias etc. generates the 
desired boundary layer elements for the model. Similar to 

the previous example, in this example also EdgeMesher 
and VertexMesher  graph nodes are automatically created.  

 
Fig.	
  2.	
  User specified digraph for creating reactor assembly 

mesh with boundary layers. 

MeshKit contains all basic meshing algorithms 
required for mesh generation. The goal with MeshKit is to 
be able to quickly develop algorithms and tools. In a short 
span of two-three years several new applications and 
algorithms have developed and published. In the 
subsequent section, we classify all the algorithms available 
in MeshKit based on element type. More details and 
documented examples can be found in MeshKit doxygen 
page [4]. 

 
II.A. Hex/Quad Meshing Algorithms 
 
Hex meshing algorithms available in MeshKit are 

based on extrusion or sweeping of a quad mesh. 
Algorithms for supporting hex/quad meshing are listed in 
this section.  

 
II.A.1 TFI Mapping 
 
Trans-finite interpolation mapping generates an all-

quad mesh by transfinite interpolation with i, j parameters. 
Fig. 3. shows the input geometry and output mesh to TFI 
mapping algorithm from an example documented in 
MeshKit code repository.   

 

 
(a) (b)	
  

Fig. 3. (a) 2D Rectangle geometry, (b) A meshed 
2D rectangle. 

 
II.A.2 CAMAL Paver 
 
CAMAL [5] is a proprietary mesh library developed at 

Sandia National Library. CAMALPaver has been 
integrated into MeshKit for generating quadrilateral 
elements using a paving scheme. It must be noted 
CAMALPaver internally creates an EdgeMesher and 
VertexMesher graph node that are coded into MeshKit. 
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II.A.3 JaalQuadMesher 
 
Quad mesher is a MeshKit native algorithm that 

produces a high quality, isotropic all-quadrilateral meshes 
for an arbitrary complex surface geometry. Two basic steps 
used in this algorithm are triangle to quad mesh conversion 
and global mesh cleanup operation. Specific details and 
results are published [6]. 

 
II.A.4 ExtrudeMesh 
 
ExtrudeMesh is a simple extrusion algorithm that 

reads in an already meshed 1D or 2D elements and creates 
a 2D or 3D mesh respectively. It also allows for extrusion 
to be specified along a rotation path. In-order to produce a 
mesh that is fit for simulation, material and boundary 
conditions from the initial mesh are propagated to the final 
mesh by specifying grouping sets. 

 
II.A.5 Sweeper 
 
OneToOneSweep algorithm generates an all 

hexahedral mesh by sweeping the source mesh to the target 
surface. It uses a harmonic function to mesh the target 
surface with good quality, avoiding expensive smoothing 
operations. The interior nodes between the source and 
target surface are generated using cage-based deformation 
method. Implementation details and results of sweeping 
algorithm can be found in this year’s proceedings of 
International Meshing Roundtable [7].  

 
II.B. Tet/Tri Meshing Algorithms 
 
MeshKit interfaces with robust automatic Tet/Tri 

meshing algorithms that have already been developed. This 
section lists all such the algorithms. Tri-meshing 
algorithms listed in this section have a restrictive license. 
Our current work includes incorporation of an open-source 
algorithm for Tri-meshing.  

 
II.B.1 CAMALTriAdvance, CAMALTetMesher 
 
CAMAL is a proprietary mesh library developed at 

Sandia National Library. CAMALTriAdvance and 
CAMALTetMesher are integrated into MeshKit for 
generating triangular and tetrahedral meshes respectively. 
It must be noted that both these operations internally create 
an EdgeMesher and VertexMesher graph node.   

 
II.B.2 NGTetMesher 
 
NetGen [8] is an LGPL licensed automatic tetrahedral 

mesh generation library. MeshKit has an interface to this 
library for generating tetrahedral meshes.  

 
 

II.B.3 TriangleMesher 
 
The Triangle library [9] is widely used for generating 

exact Delaunay triangulation, constrained Delaunay 
Triangulation, conforming Delaunay triangulations, 
Voronoi diagrams and high-quality triangular meshes. It 
has a restrictive license for commercial use. MeshKit 
provides an interface for this library for generating 2D 
triangular meshes. 

 
II.C. Other Algorithms 

 
II.C.1 PostBL 
 
PostBL mesh operation generates boundary layer 

meshes for an already existing mesh model. 
Implementation details and results can be found in the 
proceedings of International Meshing Roundtable 2013 
[10]. PostBL can handle triangular, quadrilateral, 
tetrahedral and hexahedral meshes. Fig. 4 shows a 19-
assembly reactor core that needed meshes along the 
assembly wall and fuel pin boundary for better fluid flow 
simulations. 

 

 
                   (a)                                    (b)                                         

                                                    (c) 

Fig. 4. 19 assembly reactor core mesh: (a) Original mesh.  (b) 
Close-up of original mesh showing fluid and gap regions.  (c) 
Close-up of original mesh showing boundary layers on fluid and 
gap regions. 
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II.C.2 Interval matching 
 
Interval assignment is the problem of assigning an 

integer number of mesh edges to each curve so that the 
assigned value is close to the goal value, and all containing 
surfaces and volumes may be meshed independently and 
compatibly. It is one of the key algorithms for meshing 
complicated geometries and preventing meshing 
algorithms to fail from invalid sizing specified by the user. 
Interval assignment algorithm in MeshKit uses a new 
optimization function and approach (NLIA), it is found to 
be faster and more efficient compared to other interval 
matching algorithms. Integration of this algorithm with 
other MeshKit algorithms is work in progress. 
Implementation details and findings of interval matching 
algorithm can be found in the proceedings of International 
Meshing Roundtable 2013 [11]. 

 
II.C.3 Qslim mesh decimation 
 
Source code of qslim mesh decimation library has 

been integrated in MeshKit. This algorithm uses edge 
collapse as a primary simplification method.  The cost of 
each possible edge collapse is established using quadric-
based error concept.  

 
II.C.4 Mesquite mesh optimization 
 
Mesquite [12] is an open-source mesh quality 

optimization package developed at Sandia National 
Laboratory. It can be used as a standalone operation or it 
can be coupled with other MeshKit algorithms for mesh 
quality optimization at the end of mesh generation 
operation. 

 
II.C.5 MakeWaterTight 
 
MakeWaterTight tool removes gaps, overlaps and 

discontinuous topology between surfaces. It uses MOAB to 
read facet based models produced by a solid modeling 
engine in CGM. It is assumed that the feature size is 
greater than the facet tolerance, and the facet tolerance is 
greater than the merge tolerance. Faceted surfaces are 
skinned to resolve their boundary. Bounding edges of each 
faceted surface are assembled into loops. Loops are cut 
into arcs that correspond to faceted curves, using geometric 
vertices. Each arc is then sealed to its corresponding curve 
by using node-node and node-edge contraction. The result 
is a watertight model in which adjacent surfaces share the 
same faceted edges. Implementation details can be found 
in an International Meshing Roundtable publication [13]. 
 

II.C.6 Structured Block Mesher 
 
This mesh operation generates a simple rectangular 

structured mesh, sized to completely surround the input 

model entities using a geometric entities bounding box.  
Options for grid size, mesh representation and axis type are 
defined for providing more control over the mesh 
generation process. 

 
II.C.7 Embedded Boundary Mesher 
 
EBMesh tool can generate Cartesian meshes for 

solvers that use embedded boundary algorithms. It uses 
ray-tracing technique based on hierarchical Oriented 
Bounding Box (OBBs) in MOAB. Each mesh cell is 
distinguished as being inside, outside or on the boundary of 
the input geometry, which is determined by firing rays 
parallel to x/y/z coordinates. EBMesh tool can directly 
import CAD-based solid model formats and facet-based 
formats, output from SCDMesh can be also used as input 
to EBMesh. Boundary cells created by this tool have edge-
cut fraction and volume cut fraction information for each 
material. Detailed explanation, results and comparison with 
other related tools could be found in an International 
Meshing Roundtable paper published in 2010 [14].   
 

II.D. Application Specific Algorithms 
 
All the operations listed in this section can be 

combined and setup as a graph to solve a particular 
meshing problem. RGG is the nuclear reactor application 
in MeshKit. Two specific mesh operations implemented for 
this application are AssyGen and CoreGen. MeshKit also 
includes three algorithms for generating mesh models of 
ice sheets. Ice sheets algorithm is composed of a collection 
of tailored unstructured meshing and mesh-based geometry 
algorithms in MeshKit. Details of ice sheets algorithms are 
not presented here. 
 

II.D.1 AssyGen 
 
AssyGen [1] is the first step of the three-step core 

mesh creation process, it reads an input file describing a 
reactor assembly lattice and generates an ACIS or OCC –
based geometry file. The second step is meshing, after the 
first step, user may choose to perform meshing using the 
CUBIT mesh script generated by AssyGen or using 
meshing algorithms in MeshKit. AssyGen and meshing 
steps must be performed for each assembly separately. 
 

II.D.2 CoreGen 
 
CoreGen [1] tool reads an input file describing the 

reactor core arrangement and generates the reactor core 
mesh or geometry from its component assemblies mesh or 
geometry files respectively. CoreGen uses CopyMesh, 
ExtrudeMesh, CopyGeom and MergeMesh algorithms 
available in MeshKit. A makefile is generated by CoreGen 
to automate the AssyGen and CoreGen processes for all 
assemblies that form the reactor core.  
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III. RESULTS FROM ASSYGEN ALGORITHM 
 

All the models described in this section were run by 
three physics simulation codes: PROTEUS (neutronics), 
Diablo (structural mechanics) and Nek5000 (thermo-
hydraulics). Nek5000 and Diablo used the same hexahedral 
mesh. Nek5000 is a spectral element code, so it required 
hex27 elements. Diablo and PROTEUS are finite element 
codes that used hex8 elements. Coupled physics simulation 
results are not presented in this paper. 

 
III.A. XX09 Assembly Mesh 
 
 Instrumented XX09 assembly was used in Shutdown 

Heat Removal Tests (SHRT) that demonstrated passive 
safety features of the EBR-II Experimental Breeder 
Reactor. The specific test from which this problem is 
derived is SHRT17, which is a loss of flow with SCRAM 
experiment. This test configuration was selected for the 
multi-physics demonstration because of the availability of 
temperature and other validation data available from the 
experiment. Geometry was generated by AssyGen, new 
feature to model conical pins was developed. Mesh files 
for all simulation codes are generated by making small 
modifications to the CUBIT journal files automatically 
created by AssyGen. For initial coupled simulations 
Nek5000 and Diablo mesh had 356k hex27 and hex8 
elements respectively, whereas, the PROTEUS mesh has 
505k hex8 elements. Fig. 5 shows XZ-plane section views 
of the entire assembly from Inlet (Fig. 5 (i)) to Outlet (Fig. 
5 (iv)). Material coloring is as follows: pink: stainless-
steel, yellow: sodium, blue: clad, light-blue: fuel, white: 
bond-sodium and red: fission-gas.  

 

 
 

Fig. 5. (i) Cylindrical inlet transitions to form a cone from left to 
right. (ii) Interface of inlet sodium and pointed conical lower 

plug, also shows the fuel. (iii) Top of fuel filled with bond sodium 
and fission gas. (iv) Outlet sodium. 

The oblique-sectioned view in Fig. 6 highlights 
conical fuel pin, bond sodium, clad and stainless steel outer 
ducts. Elements are observed to have a low aspect ratio, as 
the mesh of the circular cylinder pins region converges to 
the pointed conical tip. The number of interval along the 
height can be adjusted to produce elements with higher 
aspect ratio elements, for this particular mesh a coarse 
interval was chosen. 
 

  
Fig. 6. Oblique sectioned view showing meshing complexities.  
 

This assembly mesh model was run in parallel for 
performing coupled physics simulations. Partitioning of 
mesh was performed using the ‘mbpart’ tool available in 
MOAB [15]. Fig. 7(i), 7(ii) and 7(iii) show the partitioned 
mesh with each color representing a processor. Fig. 7(iv) 
shows the fuel pin and flowmeter arrangement. It must be 
noted that this arrangement is not visible from the skin of 
the mesh; a Z-section of the mesh along the fuel region is 
required to display the pins. 
 

 
  

Fig. 7. XX09 assembly (i) Inlet region partitioned mesh (ii) 
Isometric view of 1024 partitions (iii) Top view of the outlet 
partition (iv) Top view of mesh showing 61 pins. Mesh is 
partitioned using the mbpart utility in MOAB. Shows a the 
sectioned top view of the 61 pin (Note: 59 fuel pins + 2 
flowmeters (bottom left)) assembly. 
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III.B. ABTR Fuel Assembly With Load Pads 
 
AssyGen was used to model the ABTR fuel assembly 

with load pads and inter-assembly gaps. Load pads are 
modeled by specifying separate material along the duct at 
ACLP and TLP locations shown in Fig. 8(b). Inter-
assembly gap regions are divided in two equal parts and 
modeled with every assembly. All the inter-assembly gaps 
are united when CoreGen assembles the assembly meshes 
to form to create the core model shown in Fig. 10. Outlet 
plenums are modeled on top of each assembly for 
specifying outlet boundary conditions in thermo-hydraulics 
simulations. The assembly consists of 217 fuel pins. 
Dimension of one of the pins are shown in Fig. 9. Each pin 
for a particular axial height consists of four geometric 
volumes. Hexahedral meshes are obtained by specifying 
the intervals on the edges, meshing the surfaces and 
extrusion of the surface mesh. Detailed fuel assembly 
geometry (non-homogenized, Fig. 8(a)) with varying 
material specification for a fuel element cross-section 
consists of over 15k geometric volumes. It takes AssyGen 
~20 mins to create the non-homogenized geometric model.  

 
 

 

 

(a) (b) 
Fig. 8. (a) Detailed (non-homogenized ABTR fuel assembly). (b) 
Three homogenized fuel assemblies showing the Above Core 
Load Pad (ACLP), Top Load Pad (TLP) and outlet plenum 
regions. 

 
New keywords “NumSuperBlocks” and 

“SuperBlocks” were introduced to combine material blocks 
for different physics. “NumSuperBlocks” specifies the 
number of superblocks and “SuperBlocks” specifies the 
blocks to be merged to form the new superblock. For 
example, neutronics models each fuel pin with tens of 
materials along the height, whereas, thermo-hydraulics 
consider all the fuel-pins to be one material. These 
keywords help in creation of one-mesh files that can be 
used by all physics simulations. Materials and boundary 
conditions that are not required by a particular physics are 
ignored. It must be noted that superblocks are not required 

when modeling meshes for individual physics separately. 
Time taken to create the homogenized geometry and mesh 
for this fuel assembly is 2 mins. The mesh has 2.5k hex 
elements.  

 
Fig. 9. (a) Section of metal fuel pin showing dimensions in cold 
condition. 
 

IV. RESULTS FROM COREGEN ALGORITHM 
 

This section presents three different hexagonal reactor 
models: ABTR, HTGR and EBRII, modeled using the  
CoreGen tool. ABTR and EBRII reactor core models were 
used for performing coupled simulations using the SHARP 
simulation framework [16]. HTGR mesh was used by the 
PRONGHORN code developed at Idaho National 
Laboratory [17]. 

 
IV.A. ABTR Core Model With Restraint Rings 
 
Detailed configuration with I-J numbering and the 

number of occurrences of each of the assembly types is 
shown in Fig. 10. Section III.B highlights one of the fuel 
assembly models in this reactor. Control, shield, reflector 
and other assemblies are not shown in this paper. Since, all 
assemblies have varying properties in axial direction, a 
common axial configuration must be determined to satisfy 
all the geometries. This is required, since all the eight 
assemblies that form this 199-assembly core model must 
have coincident nodes along the height for creation of a 
conformal mesh that is fit for simulations.  

Homogenized fuel, shield and reflector assemblies are 
same in-terms of geometry domains, but they have 
different number of material and boundary condition. 
Control assembly has an additional duct and sodium layer 
in each assembly. All 199 assemblies must be modeled as 
different assemblies with different materials to enable 
specification of varying densities, inlet/outlet boundary 
conditions etc. The commonality is 8 assembly mesh files 
that are arranged in 199 different locations in the core. In-
order to overcome the problem of manually creating 199 
separate AssyGen files the CreateMatFiles keyword was 
introduced.  This keyword creates a AssyGen files with 
name “IJ”.inp and start material and boundary condition 
numbers  based on “IJ”. This enables a numbering scheme 
that is manageable and helps prescribe temperature and 
flow-rate etc. for a particular assembly easily.  
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Fig. 10. ABTR core configuration with lines of constant logical I, 
J assembly regions. 

 
Geometry only CoreGen feature was utilized to create 

the outer covering with restraint rings shown in Fig. 11. 
Restraint rings are shown in yellow and red color. All the 
assembly geometries created by AssyGen are first 
copy/moved to create a geometric core model. Another 
separate circular pin (ring) with the same axial divisions as 
all the other assemblies is created using AssyGen. This pin 
is subtracted from the geometric core model to create the 
outer core model and obtain the outer covering geometry 
shown in Fig. 11. Meshing, material, boundary 
specification and gap between TLP and ACLP are modeled 
after this step. The gap is modeled by shrinking the inner 
surfaces by the gap dimensions. CoreGen is run to create 
the final homogenized core model from assembly meshes 
and this outer covering mesh. The final mesh consists of 
500k hexahedral elements. Structural mechanics and 
thermo-hydraulics mesh consists of 1.5k material blocks, 
whereas, the neutronics  mesh consists of 7.5k material 
blocks. Neutronics mesh requires more material blocks 
along the height of the fuel pins. It takes less than 5 mins 
for CoreGen to assemble the core in serial mode.  

 

 
Fig. 11. Outer covering of ABTR core model showing two 
restraint rings. 
 

IV.B. Homogenized HTGR Core Model 
 
Only 6 input files with 20 lines are needed to generate 

the High Temperature Gas Reactor (HTGR) model shown 
in Fig. 12. There are 76 different types of assemblies 
(based on material) and 331 total assemblies that form this 
HTGR full core model. The process is completely 
automatic and modifications to the mesh/geometry are easy 
once the process is setup using a makefile. It takes 10 mins 
to create the assembly geometry and mesh from AssyGen 
input files. CoreGen takes less that one minutes to create 
the full core model. . A new scheme for radially numbering 
of materials was introduced because the simulation code 
that used this mesh was designed to read radially 
increasing material blocks. 

This model contains 864 different fuel materials 
(right) and 876 materials in total. The complexity and 
details can be added to the individual assemblies and mesh 
for other physics can be created using the same setup. 
Simulation and results obtained from this modeled are 
presented in a report [16]. 

 

 
 
Fig. 12. Homogenized HTGR reactor model showing (a) Other 
assemblies (b) Fuel assemblies. 

 
IV.C. EBR II Core With XX09 assembly  

 
A homogenized EBRII core mesh with detailed XX09 

assembly is shown in Fig. 13. This core model formed of 
217 assemblies; the model comprises of 7.9M hex8 
elements for neutronics mesh, 4.4M hex8 elements for 
structural mechanics mesh and 4.4M hex27 elements for 
thermo-hydraulics mesh. The geometry for XX09 and 
other homogenized assemblies are generated using 
AssyGen, then meshing is performed using CUBIT and 
finally CoreGen creates the resulting EBRII core mesh. For 
the six assemblies that surround the XX09 assembly, 
meshing is performed manually by specifying same 
interval on the edge shared with XX09 assembly. Coarse 
edge interval is assigned on all other edges. 
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Fig. 13. Homogenized EBRII core with XX09 assembly. Inlet, 
outlet, isometric and sectioned views are zoomed to show the fuel 
and other instrumentation pins in the model. 
 

V. CONCLUSIONS AND FUTURE WORK 
 

In this paper, we briefly describe the MeshKit design 
philosophy, the algorithms available in MeshKitv1.1, and 
new reactor assembly and core models modeled using the 
AssyGen and CoreGen tool respectively. New features 
were introduced and these tools and were used to 
efficiently and quickly create models of homogenized 
ABTR, HTGR and EBRII reactors. At present, for the 
purposes of testing the simulation code, homogenized 
models were created. Fully detailed, non-homogenized 
models with fuel, control and other instrumentation pins 
can be created using RGG.  

MeshKit uses a graph-based process for specifying the 
overall meshing approach, with graph nodes representing 
meshing and other operations, and graph edges as 
dependencies between those operations. This approach 
supports the traditional BREP-driven meshing process 
found in most other meshing tools, while also enabling a 
wider variety of meshing processes not strictly based on 
BREP models. MeshKit contains meshing algorithms for 
both tri/tet and quad/hex mesh generation. In some cases 
these algorithms are part of 3rd party meshing tools 
wrapped by MeshKit, while in other cases the algorithms 
are implemented directly in MeshKit. The graph-based 
design enables RGG to interoperate with other meshing 
algorithms and allow setup of complete reactor mesh 
generation problem from creation of assembly geometry to 
core mesh creation in the same program. Due to its unique 
and modular approach of development, we believe that the 
development of this library will benefit other user and 
developer communities outside the nuclear reactor 
modeling community.  

In the near future, we plan to integrate of interval 
assignment with other algorithms in MeshKit, add more 
examples to the doxygen-based documentation and 

formalize CoreGen/AssyGen process with graph-based 
design in MeshKit. Several new developments in the area 
of mesh refinement, automatic mesh scheme selection, 
support for higher order elements and integrating a mesh 
quality evaluation library are also planned. 
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